

Bioworld Technology CO., Ltd.

T-type Ca++ CP α1H (P492) Peptide

Cat No.: BS3413P

Background

Voltage-dependent Ca++ channels mediate Ca++ entry into excitable cells in response to membrane depolarization, and they are involved in a variety of Ca++-dependent processes, including muscle contraction, hormone or neurotransmitter release and gene expression. Calcium channels are highly diverse, multimeric complexes composed of an α 1 subunit, an intracellular β subunit, a disulfide linked α 2/ δ subunit and a transmembrane γ subunit. Ca++ currents are characterized on the basis of their biophysical and pharmacologic properties and include L-, N-, T-, P-, Q-, and R- types. T-type Ca++ currents are activated and inactivated more rapidly and at more negative membrane potentials than other Ca++ current types. T-type Ca++ channels enhance odor sensitivity by lowering the threshold of spike generation in olfactory receptor cells (ORCs).

Swiss-Prot

095180

Applications

Blocking

Specificity

This peptide can be used with studies using BS3413 T-type Ca++ CP α 1H (P492) pAb.

Purification & Purity

Synthetic peptide T-type Ca++ CP α 1H (P492). (Note: the amino acid sequence is proprietary). The purity is > 98%.

Product

1 mg/ml in DI water.

Storage & Stability

Store at $4 \, \mathbb{C}$ short term. Aliquot and store at $-20 \, \mathbb{C}$ long term. Avoid freeze-thaw cycles.

Research Use

For research use only, not for use in diagnostic procedure.